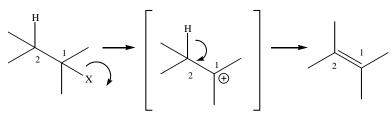

I. E₂ ELIMINATION



A. Characteristics of the E2 Elimination (Section 9.1-9.2; 10.4)

- 1. E_2 substitutions NEVER involve a carbocation intermediate.
- 2. The rate-determining step of the E_2 mechanism involves simultaneously breaking the C-X bond and the C-H bond of an adjacent C, while forming the C-C pi bond.
- 3. E_2 reactions occur with 1°, 2° and 3° alkyl halides.
- 4. STEREOCHEMISTRY OF E₂ ELIMINATIONS: There are two stereochemical requirements for E₂ elimination reactions.
 - a. The four reacting atoms (H, LG and the two C atoms)must be in the same plane (i.e., periplanar).
 - b. The hydrogen atom and the leaving group must be trans.
 - c. The overall description of this required orientation of atoms is referred to as "antiperiplanar".

II. E_1 ELIMINATION

Carbocation Intermediate

A. Characteristics of the E1 Elimination (Section 9.3-9.4; 10.4)

- 1. E_1 eliminations always involve a carbocation intermediate.
- 2. The rate-determining step of an E_1 elimination is formation of the carbocation.
- 3. The rate of the reaction will be determined by the stability of the carbocation generated in the reaction. $(3^{\circ}>2^{\circ}>1^{\circ})$.
- 4. The rate at which an E_1 reaction occurs is also determined by the ability of the leaving group to stabilize a negative charge.
- 5. E_1 reactions often compete with the SN₁ substitution to give mixtures of substitution and elimination products.
- 6. Under thermodynamic conditions, E₁ eliminations occur to give the MOST SUBSTITUTED ALKENE PRODUCT
- 7. Polar solvents enhance the rate of an E_1 elimination reaction.

III. COMPETITION BETWEEN E1, E2, SN1, SN2 REACTIONS (SECTION 9.8) IDENTIFYING WHICH REACTION WILL OCCUR

Reaction conditions for the SN_1 and E_1 mechanisms are similar. Reactions are also similar for the SN_2 and E_2 reaction mechanisms. The following process can be used to help determine which reaction(s) is (are) favored under a given set of reaction conditions.

A. Identify the reactive functional group(s) in the starting material and the reaction mechanism favored for that functional group.

Functional Group	Reaction(s) Favored
1° Alkyl Halide, Tosylate	E_2 , SN_2
2° Alkyl Halide, Alcohol, Tosylate	E_1, E_2, SN_1, SN_2
3° Alkyl Halide, Alcohol	E_1 , SN_1

B. Identify the reaction conditions. Consider both pH (acidic or basic) and the solvent.

Reaction Condition	Reaction(s) Favored
Acidic	E_1 , SN_1
<i>Reagents:</i> H^+ , H_3O^+ , HX,	
H ₃ PO ₄ , H ₂ SO ₄ , CH ₃ CO ₂ H (acetic acid)	
Basic	E_2 , SN_2
Reagents: HO ⁻ , NaOH, KOH,	
NH ₃ , RNH ₂ , RO ⁻ Na ⁺ (alkoxides)	
Solvents	
Polar, Protic	E_1 , SN_1
Polar Aprotic	E_2 , SN_2

- C. Other Factors
 - 1. Determine if elimination reactions can occur. Look for an sp³ carbon adjacent to the sp³ carbon bearing the leaving group (halogen or water). If the adjacent sp³ carbon is bonded to at least one hydrogen, elimination may occur.
 - 2. Determine if substitution can occur. Look for the presence of a nucleophile. If a nucleophile is present, substitution can occur.